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Abstract

A series of creep tests were conducted on Cu-8 Cr-4 Nb (Cu-8 at.% Cr-4
at.% Nb), Cu-4 Cr-2 Nb (Cu-4 at.% Cr-2 at.% Nb), and NARloy-Z (Cu-3 wt.%
Ag-0.5 wt.% Zr) samples to determine their creep properties. In addition, a
limited number of low cycle fatigue and thermal conductivity tests were
conducted.

The Cu-Cr-Nb alloys showed a clear advantage in creep life and sustainable
load over the currently used NARloy-Z. Increases in life at a given stress were
between 100% and 250% greater for the Cu-Cr-Nb alloys depending on the
stress and temperature. For a given life, the Cu-Cr-Nb alloys could support a
stress between 60% and 160% greater than NARloy-Z.

Low cycle fatigue lives of the Cu-8 Cr-4 Nb alloy were equivalent to
NARloy-Z at room temperature. At elevated temperatures (538°C and 650°C),
the fatigue lives were 50% to 200% longer than NARloy-Z samples tested at
538°C.

The thermal conductivities of the Cu-Cr-Nb alloys remained high, but were
lower than NARloy-Z and pure Cu. The Cu-Cr-Nb thermal conductivities were
between 72% and 96% that of pure Cu with the Cu-4 Cr-2 Nb alloy having a
significant advantage in thermal conductivity over Cu-8 Cr-4 Nb. In
comparison, stainless steels with equivalent strengths would have thermal
conductivities less than 25% the thermal conductivity of pure Cu.

The combined results indicate that the Cu-Cr-Nb alloys offer an attractive
alternative to current high temperature Cu-based alloys such as NARloy-Z.
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Introduction

A series of Cu-Cr-Nb alloys produced by Chill Block Melt Spinning (CBMS)
was examined previously (1). The results strongly indicated that the alloys
possessed exceptional high temperature strength and creep resistance while
maintaining good electrical and thermal conductivities. Based on the creep
properties and electrical conductivities, the decision was made to scale-up the
Cu - 8 at. % Cr - 4 at. % Nb (Cu- 8 Cr-4 Nb) alloy for extensive mechanical
testing. In addition, the thermal conductivity of the alloy would be directly
tested. For making the alloy in large quantities, CBMS was replaced with
conventional argon gas atomization to produce powder. Based on work by
Anderson et al. (2, 3), it was felt that there was a chance to increase the
thermal conductivity significantly with a minimal reduction in strength.
Therefore, as a higher thermal conductivity option, a Cu-4at.% Cr-2 at.%
Nb (Cu-4 Cr-2 Nb) was also examined.

The Cu-Cr-Nb alloys derive their strength from the very stable intermetallic
phase CroNb. This phase is stable in solid and liquid Cu to temperatures above
1600°C. The constituents, Cr and Nb, have minimal solubilities in solid Cu,
limiting the decrease in conductivity. The high stability of the Cr:Nb also
contributes to the microstructural stability of the alloy during subsequent
elevated temperature exposures.

NARloy-Z (Cu - 3 wt.% Ag - 0.5 wt.% Zr) derives its strengthening from a
combination of solid solution and precipitation strengthening by Ag and
precipitation strengthening by the CuxZr (x=4 or 5) phase. The CuxZr phase is
also important in raising the temperature at which the alloy loses the benefits
of work hardening.



Experimental Procedure

The testing focused primarily on creep resistance. In addition, the thermal
conductivity and low cycle fatigue behavior of the Cu-Cr-Nb alloys were
examined less extensively.

Production Of Material

The Cu-Cr-Nb alloys were purchased from Special Metals Corporation as
metal powder. The powder was sieved to -150 mesh (less than 106 um), but
the average powder particle size was approximately 45 um. The powder was
canned in 51.4 mm (2 inch) diameter 1020 carbon steel cans. The cans were
evacuated and sealed. The canned powder was extruded at 857°C (1575°F)
using a round die which produced a 16:1 reduction in area. The result was a
round bar nominally 1 meter (39 inches) long with a diameter of 12.7 mm (0.5
inches). The usable Cu-Cr-Nb alloy core was typically 9.53 mm (0.375 inches)
in diameter.

NARloy-Z was supplied to NASA LeRC by Don Ulmer of Rocketdyne in the
form of a 191 mm x 305 mm x 37 mm (7" x 12" x 1.5") plate in the as-hot rolled
condition. The plate was cut into several smaller pieces for ease of handling.
The smaller pieces were solution heat treated at 900°C (1650°F) for 1 hour and
water quenched. The samples were aged at 482°C (900°F) for 3 hours and air
cooled. All samples were placed in Sen/Pak!heat treat envelopes that were
filled with Ar to prevent oxidation of the surfaces during the heat treatment
steps.

Alloy Density Measurement

Samples of the alloys and pure copper were weighed using a Ainsworth
AA-160 balance. To determine the volume and density of the samples, the
volume of the samples was determined using a Micromeritics Accupyc 1330
gas pycnometer. High purity helium gas was used as the working gas. The
unit determined the volume of the samples and, from the provided weight, the
volume. The unit was purged 20 times prior to taking data. Fifty repetitions of
measuring the volume of the samples were taken automatically by the
pycnometer.  Following the runs, the unit averaged the fifty density
measurements to calculate the density of the samples.

1 Sen/Pak is the registered trademark of the Sentry Company, Foxboro, MA
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Identification and Analysis of Precipitates

Previous work by Kuo (4) indicated that up to a quarter of the Cr atoms in
the very similar Cr,Ta phase could be substituted for by Cu. The stability of
the hexagonal phase of Cr.Nb in melt spun ribbons (1, 5) indicated the
possibility that the same was occurring in Cr2Nb.

To determine if Cu was substituting for Cr in material produced from
atomized powder, precipitates were extracted from the Cu matrix. A1l g
ammonium sulfate-1 g citric acid-100 ml H2O electrolyte solution was used to
electrolytically dissolve away the Cu matrix. The precipitates were collected
from the solution using a 0.1 um filter paper.

The collected precipitates were analyzed using X-ray diffraction to
determine the phases present and the lattice parameters. Following X-ray
diffraction analysis, the precipitates and dissolved Cu matrix were chemically
analyzed.

Creep Testing

The results of preliminary creep testing conducted at NASA LeRC have been
reported elsewhere (6, 7). Only data on as-extruded material tested in a design
level test matrix allowing for determination of confidence limits on the various
tensile results will be presented in this final report.

The sample geometry used for creep testing appears in Figure 1. The
subsize samples conform to ASTM standard E 8 (8). The sample used threaded
ends to accommodate existing fixturing. The sample had a nominal 16.26 mm
(0.640 inch) gauge length.

- e
4.0rmn—\\ 1
g w—

4 1

Ends threaded for
1/4°-20 threads/inch

Figure 1 -
Creep Specimen Design

Creep testing was conducted in vacuum at temperatures between 500°C
and 800°C. Based on previous work, a test matrix was designed to allow for
accurate prediction of the creep life and creep rate of the alloys. Three stresses
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were selected at each temperature to give nominal 30, 100 and 300 hour lives.
The test matrices are given in Table 1. The column headings indicate the
extrusion run or plate piece for each sample. Samples from the same column
come from the same starting stock. Within the table the numbers represent
the testing order of the samples. For the Cu-4 Cr-2 Nb extrusions, sufficient
samples were not available from some bars to allow for testing the complete
test matrix. In that case, the intermediate stress tests were not performed.

During the allocation of Cu-4 Cr-2 Nb samples, several samples were
moved from lower temperatures to higher temperatures to accommodate the
lower number of available samples. This allowed for a low-high stress / low-
medium-high temperature with some medium stress data points.
Unfortunately in the case of Cu-4 Cr-2 Nb, the spreadsheet did not recalculate
the stresses correctly due to an error in the spreadsheet formula. As a result,
some high temperature samples had a higher stress than intended. These
differences are reflected in Table 1 and later in the design space. As will be
discussed later, the higher stresses still produced valid results.

Select samples were examined using scanning electron microscopy (SEM).
The general features of the surface were investigated, and precipitates and
other features on the surface were examined to determine if there was any
correlation between the precipitates and failure sites.



Table 1a-

Cu-8 Cr-4 Nb Creep Test Matrix
Extrusion
Temperature| Stress | L-3097 | L-3104 | L-3105 | L-3106 | L-3107 | L-3108
(°C) (MPa)
500 92.8 19 20 18 41 3 50
84.0 5 43 25 45 49 6
72.9 10 47 39 36 29 28
650 49.8 27 17 4 37 23 2
44.3 38 26 12 7 1 13
37.4 46 24 40 48 35 11
800 26.8 34 44 33 21 53 22
23.3 32 14 30 52 8 42
19.2 54 9 31 51 15 16




Table 1b -

Cu-4 Cr-2 Nb Creep Test Matrix

Extrusion

Temperature
(°C)

Stress
(MPa)

L-3284

L-3296 | L-3297

L-3298

500

92.8
84.0
729

650

49.8

443

37.4

800

44.3

26.8

233

19.2




Table 1c -

NARIoy-Z Creep Test Matrix
Plate
Temperature | Stress 3 5 6 8
(°C) (MPa)
500 84.0 16 18 7 30
72.9 15 21 26 13
62.1 24 9 29 2
650 37.4 33 8 10 32
27.6 12 19 5 25
17.8 35 34 3 6
800 14.6 1 27 23 11
10.4 28 22 20 17
6.2 36 14 31 4

Thermal Conductivity Testing

A limited number of thermal conductivity tests were conducted on the Cu-8
Cr-4 Nb and Cu-4 Cr-2 Nb alloys. For NARloy-Z, design level data were already
available (9). For the Cu-8 Cr-4 Nb alloy, one sample from each of the six
extrusions were sent to the Thermophysical Properties Research Laboratory
(TPRL) at Purdue University. Only one Cu-4 Cr-2 Nb sample was tested at
TPRL.

Thermal conductivity testing was conducted by the laser flash method. The
method calculates the thermal conductivity of the material using the formula

A1) =Prr %4r) Ce(r) (1]



where Aq) is the thermal conductivity at temperature T (W/mK), p,, is the room

temperature bulk density (g/cm3), oy is the thermal diffusivity at temperature
T (cm?/s) and G, is the heat capacity at temperature T (J/gK).

The heat capacity was measured using a Perkins-Elmer DSC-2 Differential
Scanning Calorimeter. Sapphire was used as the standard. The thermal
diffusivity was measured using an apparatus consisting of a Korad 2 laser to
irradiate the sample and an infrared detector to record the temperature rise on
the opposite face. The diffusivity was calculated from the time it took the
sample to reach half its maximum temperature rise (tx) using the formula

we?
Ary = T (2]

%

Here L is the thickness of the sample, and W is a dimensionless parameter
specific to the individual machine and specimen relating to the heat loss from
the specimen. In the ideal case of no heat loss, the value of W is 0.139. The
maximum temperature rise was typically less than 1°C. For elevated
temperature diffusivities, the sample was placed in an evacuated bell jar and
heated using a Ta heater to the desired temperature prior to testing.

Low Cycle Fatigue

Low cycle fatigue (LCF) testing of the Cu-8 Cr-4 Nb alloy was conducted on
an older batch of material processed using the same conditions as the material
produced for the creep tests. Based on a comparison of the creep properties of
the prior and current materials, there were no discernible differences between
the two batches of materials.

LCF testing was performed at room temperature, 538°C and 650°C (1000°F
and 1200°F). Fully-reversed, strain-controlled fatigue tests were performed
using a triangular waveform at a constant strain rate of 0.12/min (0.002/s).
An 89 kN (20,000 1bf) MTS hydraulic test machine fitted with an environmental
chamber was used. A 1.27 cm (0.5 inch) gauge length extensometer was
attached to the specimen for strain measurement and control. For the elevated
temperature tests, the specimens were heated using an inductively heated SiC
susceptor. A thermocouple inserted from the bottom between the susceptor
and the specimen was used to monitor and control the temperature. Oxygen
gettered Ar gas was flowed over the sample at a rate of 4 1/min (0.14 SCFM) to
prevent oxidation of the sample during testing.



Results

Alloy Chemistries

The actual chemistries of the Cu-4 Cr-2 Nb, Cu-8 Cr-4 Nb and NARloy-Z
alloys used in the testing are presented in Table 2. In addition to the
composition of the consolidated material, the chemistries supplied by Special
Metals for the powders is also presented.

The critical need for the Cu-Cr-Nb alloys is to maintain an atomic Cr to Nb
ratio of 2 or slightly greater. By maintaining a Cr-rich Cr.Nb precipitate
hydrogen embrittlement can be controlled or eliminated (10). Table 2 also lists
the atomic Cr to Nb ratio.

Table 2 -
Chemistries Of Cu-4 Cr-2 Nb, Cu-8 Cr-4 Nb and NARloy-Z Samples

-

Alloy Cr Cu Nb (o) Zr Cr:Nb

Cu-4 Cr-2 Nb — Powder! Bal. | 292 | 251

Cu-4 Cr-2Nb Bal. | 36 | NA
Cu-8 Cr-4 Nb — Powder' Bal. | 549 | 455
Cu-8Cr4 Nb Bal.

NARloy-Z Bal.

All chemistries in weight percent

O is in ppm by weight

Chemistry supplied by Special Metals

Special Metals Corporation also supplied an analysis of the powder sizes for
the Cu-4 Cr-2 Nb and Cu-8 Cr-4 Nb powders. The powder size distributions
are supplied in Figure 2. Over 25% of both powders were -500 mesh and 75%
of both powders were -200 mesh.
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Figure 2a -
Size Distribution Of Cu-4 Cr-2 Nb Powder
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Figure 2b -
Size Distribution Of Cu-8 Cr-4 Nb Powder
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Alloy Densities

The densities of the alloys are dependent on the actual chemistries of the
alloys. The calculated density of Cr:Nb is 7.657 compared to 8.94 g/cm? for
pure Cu (11). Therefore the density of the Cu-Cr-Nb alloys decreases as the
amount of Cr and Nb and hence the volume fraction of CrzNb increases. For
the studied compositions, the densities are listed in Table 3 and graphically
compared in Figure 3. Table 3 also includes the accepted values for Cu and
NARloy-Z.

Table 3 -
Densities Of Cu, Cu-Cr-Nb Alloys and NARIoy-Z
Sample Experimental Density Accepted Density
(g/lem’) (g/cm®)
Cu 8.920 8.94
(Ref. 11)

Cu-4 Cr-2 Nb 8.850
Cu-8 Cr<4 Nb 8.756

NARIloy-Z 9.130

11



Density (g/cm?)

Cu Cu-4 Cr-2Nb Cu-8 Cr-4 Nb NARIoy-Z

Figure 3 -
Comparison Of Alloy Densities

Precipitate Analysis

The material extracted from the Cu-8 Cr-4 Nb alloy was identified by X-ray
diffraction as consisting of a Cu solid solution, FCC Cr.Nb, and a Cr solid
solution. The Cu came from undissolved matrix incorporated into the sample.
The lattice parameters of the phases are presented in Table 4. Because only
one small peak was observed for the Cr, no lattice parameter is given. The
results showed no change in the lattice parameters from the values for the pure
materials.

Table 4 -
Lattice Parameters Of Extracted Precipitates
Precipitate Lattice
Parameter
(nm)
Cr.Nb 0.6993 £ 0.0001
Cu (ss) 0.3617 £ 0.0001
Cr (ss) Present (1 peak)

12



The results of the chemical analysis of the precipitates are presented in
Table 5. The matrix showed nothing but pure Cu. This supports the design
work on the alloy and previous contentions that the matrix should be nearly
pure Cu. The chemical analysis of the precipitates is complicated by the
presence of unknown amounts of Cu and Cr precipitates. However, one can
assume that the amount of elemental Cr is small (<5%). The theoretical values
for CrisCuosNb are given in Table 5. Assuming that Cu substitutes fro Cr as
shown by Kuo (4) for Cr;Ta, the atomic ratio of Cr to Nb should shift to lower
values. Looking at the measured Cr to Nb ratio on an atomic basis, the results
fall within the stochiometric limits for CroNb. This indicates that there was no
significant substitution of Cu for Cr in the Cr2Nb.

Table 5 -
Chemical Analysis Of Precipitates and Matrix
Element Matrix Precipitates | Theoretical CrysCuosNb
(Wt.%/ | (wt.%/ at.%) (wt.% / at.%)
at.%)

Cr 0/0 27.2133.9 38.5/50.0

Cu 100/100 | 47.7148.7 15.7116.7

Nb 0/0 25.0/17.4 45.8/33.3
Cr:Nb N/A 1.09/1.94 0.84/1.5

Creep Testing

The results for the creep tests were examined to determine four main
parameters; time to 1% creep strain, rupture life, steady-state creep rate and
elongation at failure. In addition, the times spent in first, second and third
stage creep were determined. The 1% creep strain was chosen as a way to
compare the Cu-Cr-Nb alloys to the NARloy-Z samples which had considerably
different creep behavior under the testing conditions. The value of 1% was
arbitrarily chosen as an amount greater than the first stage creep strain for
most of the tests.

Cu-8Cr4 Nb

A typical creep curve for Cu-8 Cr-4 Nb is presented in Figure 4. The alloy
typically has a very short third stage creep regime. The total creep elongation

13



of the sample is also fairly low. All the creep data and curves for the Cu-8 Cr-4
Nb alloy are presented in Appendix A.

A summary of the time to 1% creep strain is presented in Figure 5. Figure
6 shows the steady-state creep rates for Cu-8 Cr-4 Nb while Figure 7 presents
the creep rupture lives. The creep elongation of Cu-8 Cr-4 Nb is displayed in
Figure 8.

The time to 1% creep, steady-state creep rate and creep life follow a
logarithmic dependency. Because of this, the geometric mean was used
instead of the average. The geometric mean was calculated from the formula

3 bogx
S B
Geometric Mean=10 » [3]

where x is either the time or rate. For the elongation, the simple average was
used. The mean is presented in each figure for easy comparison. The detailed
analysis of the creep behavior used all data points.

8.00%
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6.00%

5.00%

4.00%
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2.00% Steady-State Creep Rate = 1.42 x 10° /h

1.00%
000% ¥——— el
0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0
Time (h)
Figure 4 -

Typical Cu-8 Cr-4 Nb Creep Curve
(Extrusion L-3107 Tested At 800°C/19.2 MPq)

14



Stress (MPa)

Rate (1/h)

mo e, 0o
""""""""""""""""""" Rt S-S
e aa T

AAA“A~A a
""""""""" A;Z"AAA
10 At t it =
0.1 1 10 100 1000
Time To 1% Creep Strain (h)
Figure 5 -
Times To 1% Creep Strain For Cu-8 Cr-4 Nb
1E-01 ¢
A
7 S s SR T R TR
5 s 4
/K ‘ 8
7 8 o B 3
[ X< SEREETPEETPPETRREES §/A ------------------- Bafyr ooy
o ’ <
a B 'I'Z e}
Bo
TE-04 f-----r-mmmmmms s s
o o
=]
1E-05 o
10.0 100.0
Stress (MPa)
Figure 6 -

Steady-State Creep Rates Of Cu-8 Cr-4 Nb

15

¢ 500°C Data
o 650°CData
a 800°CData
500°C Fited
— == §50°C Fitied
= = = 800°C Fitied

¢ 500°C Data
o 650°CData
a 800°C Data
500°C Filled
- = = 650°C Fited
- == 800°C Fitled




Stress (MPa)

Elongation (%)

100

L 9.0..0 ...
....................................... L A
-------------------- e R A R R R R R LR
o o do- -0 a o 500°C Data
""""""""""""""""""" aLte Ty o 650°C Data
a 800°CData
--------------------------------------------------------------------------- 500°C Fitted
a N\A = = = G50°CFited
a8 == 800°C Fited
............................ B i et ee i s acasausacmacacacassreecance .
Ama A
10 + B e
1 10 100 1,000 10,000
Life (h)
Figure 7 -
Creep Rupture Lives Of Cu-8 Cr-4 Nb
9T
81 a
N
T 8 °
9 <
6+ - o o b4
5-; o a B B d . 8 © 500°C Data
o - - 'E'g ¢ 8 o 650°C Dala
41 8 o ° ° 4 800°C Data
: a ] a] ° -]
3f
I <
21
1...
0 it R B s S T T
0 10 20 30 40 50 60 70 80 90 100
Stress (MPa)

Figure 8 -
Creep Elongations Of Cu-8 Cr-4 Nb
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Cu4Cr-2Nb
A typical creep curve for Cu-4 Cr-2 Nb is presented in Figure 9. The alloy
typically has a third stage creep regime in contrast to the Cu-8 Cr-4 Nb alloy.
The creep elongations of the samples are higher than Cu-8 Cr-4 Nb. All the
creep curves for the Cu-4 Cr-2 Nb alloy are presented in Appendix B.

A summary of the time to 1% creep strain is presented in Figure 10. As
with the Cu-8 Cr-4 Nb results, the geometric mean of the data is plotted in
Figure 10. Figure 11 shows the steady-state creep rates for Cu-4 Cr-2 Nb while
Figure 12 presents the creep rupture life of Cu-4 Cr-2 Nb. The creep
elongations for Cu-4 Cr-2 Nb are given in Figure 13.
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Figure 9 -

Typical Cu-4 Cr-2 Nb Creep Curve
(Extrusion L-3298 Tested At 650°C/44.3 MPa)
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NARloy-Z

NARloy-Z exhibited a very different behavior from the Cu-Cr-Nb alloys.
From the previously available data (9), it was known that the alloy needed
lower stresses over the temperature range used in the testing to achieve similar
lives. The test matrix was modified to reflect this. What was not expected was
the sometimes very high total creep elongations and extended third stage creep
observed. Figure 14 shows a typical creep curve. In addition to much greater
creep elongations, the alloy tends to exhibit a relatively short second stage

creep. Appendix C contains all of the creep curves.

A summary of the time to 1% creep strain is presented in Figure 15. Figure
16 shows the steady-state creep rates for NARloy-Z. The creep rupture lives of

NARloy-Z is presented in Figure 17. Figure 18 gives the creep elongation.

16.00% T

14.00%

12.00%

10.00%

8.00% °

Creep Strain

6.00% °

4.00% o°°
Steady-State Creep Rate = 6.10 x 10°/h 00’
2.00% °o¢°°°°

PPV WS &
POV WDV Ho-o-v

0.00% e . .
0.0 5.0 10.0 15.0 20.0 25.0

Time (h)

Figure 14 -
Typical NARloy-Z Creep Curve
(Plate 3 Tested At 650°C/27.6 MPa)
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Creep Fracture Surfaces

The creep fracture surfaces were examined using a Hitachi Field Emission
SEM and a JEOL SEM. Typical fracture surfaces for the Cu-Cr-Nb and
NARloy-Z creep specimens are shown in Figure 19. The Cu-Cr-Nb samples
show a very rough surface with many faceted precipitates visible (Figure 19b).
The NARloy-Z samples show a much smoother surface with little evidence of
precipitates on the surfaces. The NARloy-Z also shows more striations on the
fracture surface.

From examination of the fracture surfaces it was evident that the NARloy-Z
samples failed by microvoid coalescence and growth. Large “pipes” could be
seen extending deep into the material from the surfaces. Large, sharp ridges
were also observed.

The mechanism for the Cu-Cr-Nb alloy failure is not as easily distinguished,
but careful examination reveals that the samples failed by microvoid
coalescence and growth. In this case, the precipitates appeared to limit the
growth of the voids. Hence the scale of the dimples was much smaller than
that for NARloy-Z.

Figure 19a -
Typical Fracture Surface Of Cu-8 Cr-4 Nb Creep Samples
(Extrusion L-3107 Tested At 500°C/84.0 MPq)
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Figure 19b -
Detail Of Cu-8 Cr-4 Nb Fracture Surface
(Extrusion L-3107 Tested At 500°C/84.0 MPa)

Figure 19c -
Typical Fracture Surface Of Cu-4 Cr-2 Nb Creep Samples
(Extrusion L-3297 Tested At 650°C/37.4 MPaq)
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Figure 19d -
Typical Fracture Surface Of NARIoy-Z Creep Samples
(Plate 3 Tested At 800°C/10.4 MPa)

Modeling of Creep Properties
The creep rate and creep life of the alloys were modeled with the help of
Dennis Keller of Real World Quality Systems, Inc. using the RS/1 Explore?
computer program. Due to range of the data, the values were scaled so that
the scaled values would fall between -1 and 1. The general equations used to
describe the creep properties are

IN(Y) = By + B3 IN(T) scaieq + B2 IN(0)scasea + Bﬂ[ln(T)sabd]z [4]
I(Y ) = Bo + By IN(T )scasea + B2 1(6)scioad *+ Bz 1T )scatoa IN(S)scaioa] [5]
In(Y ) =B + By IN(T )scatog + B2 IN(C )scaioq [6]

where Y is either the creep rate, time to 1% creep or creep life, p, are the model

coefficients, and In(T)scaa and In(c)saea are the scaled temperatures and
stresses defined by the equations

In(T) = 051IN(Tygee) + IN(Tye )}
IN(Macset = =5 lIA(T )+ In(Tog)] 17]

2RS/1 Explore produced by BBN Software Products, A Division of Bolt Beranek and
Newman, Inc., Cambridge, MA
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In(c) - 050In(Cyyy, ) +In(Gpg, )] 81
05[IN(Cpey )+ IN(C g, )]

The analysis of the data indicated that there was a need for a second order
variable in most cases. In the case of Cu-8 Cr-4 Nb, there were no data points
that appeared to be outliers from the analysis of the data. Testing of the
various models using the time to 1% creep data did not reveal a clear choice for
the model. The model given in Equation [4] was chosen since it made the most
metallurgical sense and the Suymx value was the smallest. For the Cu-8 Cr-4
Nb data, there were no apparent outliers, and all 54 data points were used in
the analyses.

IN(G)scaiea =

In the case of NARloy-Z, there were no apparent outliers for the creep rate.
However, analysis of the time to 1% creep and creep life data indicated that one
data point from each data set could be considered an outlier. The effect is most
apparent in the model for creep life where the second order term changes from
a stress-temperature interaction to a T2 term. Both the model for the complete
data set and the data set without the suspected outliers are presented in Table
6. The models are differentiated by the number of data points used in the
analysis.

The largest number of outliers occurred in the Cu-4 Cr-2 Nb data set. In
addition to one data point which was lost, the analysis indicated that two data
points for the creep rate and three data points for the creep life were potential
outliers. For the creep rate model, the exclusion of the three data points did
not change the model but did increase the fit considerably. For the creep life
model, the exclusion of the three potential outliers changes the model by
requiring the addition of a temperature-stress interaction term while the model
with all data points can be fit without the second order term.

The analyses showed that the samples tested at higher than desired
stresses produced valid results. The only drawback was the time to 1% creep
and creep lives were quite short. The creep rates also were much higher than
other samples.
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Table 6 -
Creep Model Coefficients

Alloy Y Points Bo B, B, Siny.lnx
Cu-8Cr-4Nb Creep Life 54 4.836 -5.756 -5.383 0.697
1% Creep 54 2.678 -5.825 | -5.265 0.971
Creep Rate 54 -1.399 6.240 5.725 0.822
Cu-4Cr-2Nb Creep Life 28 4,044 6.186 -5.982 0.818
25 4.551 -6.822 -6.496 0.442
1% Creep 27 2.048 -6.154 | -5.672 0.937
Creep Rate 28 -8.053 | 8.098 8.138 0.835
26 -8.091 8.205 7.986 0.556
NARloy-Z Creep Life 36 4464 | -5.175 | -6.683 0.551
35 4.461 -4.671 6.228
1% Creep 36 2.894 6.794 -7.266
35 3.344 -7.511 -8.127
Creep Rate 36 -8.465 8.261 9.175

There is some concern in choosing to call some points outliers given the
scatter of the data. For the most conservative applications where the response
is mission critical, the models with all data points should probably be
preferred. For applications where minor deviations are not critical, i.e., welding
electrodes, the better fit models with the outliers removed give an adequate
model of the materials.

The value of any model is its predictive capabilities. It must be pointed out
that the design space for the testing was non-standard in that it was not
rectangular (Figure 20). Rather, because of the nature of creep, the maximum
stress of the lowest temperature creep test was not the same as the maximum
stress of the highest temperature creep test. When predicting the response of
the alloys one must stay within the polygons defined by the design spaces.
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Figure 20c -
Design Space for NARloy-Z

There is no easy way to predict 95% confidence interval limits for the
untransformed creep rate and life. However, a good approximation can be
arrived at by using the standard errors of regression (Smym listed in Table 6.
The value for Y is given by the equation

Bo +BIN(T )scateq + B2 IN(6 )scateq }

9
+B12[IN(T ecatoa I1( )scaion)] + Bis (T )scaiea ] [9]

exp(in(Y)) = exp{

The approximate 95% confidence intervals for a given Y at a specified
temperature and stress combination are given by the equation

Bo + By IN(T )scaieq + B2 IN(6)scasea }[IO]

expfin(Y ) £2S,,, n.] = X +B142[IN(T ) scator NG Dscnioa | + Bis IN(T )2stoa £ 2Sny.nx

To back calculate the stress that the alloy can withstand at a given
temperature for a specified time, the equation

czexp{-[ln(Y)-Bo—& IN(T )siod = BerlIn(T Jsoa] ]} 1]

=By = Bi2 IN(T )scasea
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can be used. Once again the 95% confidence intervals must be approximated
using the equation

5+2S _ exp{_[ln(y) 28,y nx = Bo = BiIN(T )scstea = Bu[’n(T)w]z]} [12]
nY.nx =

=Bz — B12 (T )scaiea

Examination of the results shows that within the limits of the design space
these approximation of the 95% confidence intervals are valid and meaningful.
For other confidence intervals, i.e., a 99% confidence interval, 2S,, ,, should be

replaced by xS,,,.where x is the appropriate t-test value for the confidence
interval given the degrees of freedom for the tests.

Examples of the calculated -2¢ stresses for the creep lives of the alloys are
presented in Table 7. The points column refers to the number of data points
used in the model. The trends generally follow the data. However, in some
cases the models can predict that NARloy-Z is superior to the Cu-Cr-Nb alloys.
Examination of the data and the models indicates this is because of the Siyin«
term in the equations for predicting the stresses. Since the NARloy-Z values of
Smyme are smaller than the Cu-Cr-Nb values, the decrease from the average
value when calculating the lower 95% confidence limit is smaller. The two
cases for Cu-4 Cr-2 Nb also show this phenomena. For other properties where
the value of Smymx for the NARloy-Z data is comparable to the Cu-Cr-Nb values,
the expected result of the NARloy-Z being inferior does occur.
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Table -7 -
95% Confidence Minimum Predicted Stresses For 1, 10 and 100 Hour Creep Lives

Life (h)
Alloy Temperature | Points 1 10 100
(°C)

Cu-8Cr4 Nb 500 54 189.3 108.4 62.1
650 54 46.8 26.8 15.4

800 54 11.7 6.7 3.8
Cu4 Cr-2Nb 500 28 148.4 89.9 54.4
25 164.2 106.5 69.1

650 28 345 20.9 12.7
25 42.7 26.9 16.9

800 28 10.0 6.1 3.7

25 11.6 7.1 43
NARloy-Z 500 36 147.5 89.2 53.9
35 110.1 68.0 42.0
650 36 40.3 25.8 16.5
35 44.4 27.4 16.9

800 36 16.6 111 7.4

35 15.6 9.6 5.9

Thermal Conductivity Testing

Cu-8 Cr-4 Nb

The heat capacity of seven Cu-8 Cr-4 Nb samples were measured from 23°C
to 702°C. The data was extrapolated to 800°C for the thermal conductivity
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calculations. The average heat capacity and 95% confidence limits are
presented in Table 8 and Figure 21. The heat capacity was well described by
the equation

Cp =258x10°T? +542x10°T +0.379 [13]

where ¢, is the heat capacity (J/gK) and T is temperature (K). Analysis did
indicate that the temperature squared term was sufficiently important to
include in the fitting of the data.

Table 8 also contains the thermal diffusivity of the alloy as measured by the
laser flash technique. Figure 22 graphically presents the values. The thermal
diffusivity decreased slowly with increasing temperature. Between 700°C and
800°C the thermal diffusivity decreased more rapidly, probably because of the
dissolution of Cr:Nb into the Cu matrix. Statistical analysis indicated that a
good fit of the data could still be obtained for all the data. The data for the
thermal diffusivity between 23°C and 800°C was fitted to the equation

a=-257x10772+170x10°T +0.834 [14]

where a is the thermal diffusivity (cm?/s). This representation does not take
into account the decrease in thermal diffusivity between 700°C and 800°C.

The value for the thermal conductivity was calculated as previously
explained in the Experimental Procedure. The average room temperature
density of the alloy was 8.304 g/cm3. The calculated thermal conductivities are
presented in Table 8 and Figure 23. The thermal conductivity decreases
between 700°C and 800°C, probably due to dissolution of the small amount of
elemental Cr precipitates into the matrix. The 95% confidence intervals were
approximately 10% of the value of the thermal conductivities.

The Cu-8 Cr-4 Nb alloy frequently will be used at temperatures less than or
equal to 700°C. Between 23°C and 700°C the thermal conductivity is
accurately modeled by the simple linear equation

A =935x107T + 286 [15]
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Table 8 -
Average Thermal Properties Of Cu-8 Cr-4 Nb

Heat Capacity Thermal Diffusivity [Thermal Conductivity
(J/gK) (cm’Is) (W/mK)
Temperature |Average 95% Average 95% Average 95%
(K) Confidence Confidence Confidence
Interval Interval Interval
296 0.395 +0.010 0.870 +0.059 286 +24.788
373 0.406 0.010 0.855 0.065 290 22.772
473 0.413 0.005 0.852 0.060 293 20.575
573 0.417 0.003 0.851 0.047 293 17.958
673 0.427 0.004 0.830 0.051 295 19.255
773 0.436 0.008 0.805 0.066 293 26.785
873 0.446 0.006 0.789 0.073 293 27.800
973 0.457 0.005 0.777 0.056 294 23.292
1073 0.706 0.094 277 22.305
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Average Heat Capacity Of Cu-8 Cr-4 Nb
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Cu-4 Cr-2 Nb

The heat capacity of the Cu-4 Cr-2 Nb alloy is presented in Figure 24 and
tabulated in Table 9. Since only one sample was tested, there are no
confidence intervals assigned to the data points. A curve with the equation

C, = -6.97 x 10°T? + 1.71 x 10T + 0.338 [16]

where ¢, is the heat capacity (J/gK) and T is temperature (K) was fitted to the
heat capacity data.

The thermal diffusivity for Cu-4 Cr-2 Nb is presented in Figure 25 and
Table 9. A curve with the equation

a = -369 x 10°T? - 2.16 x 10T + 1.10 [17]
where o is the thermal diffusivity (cm?/s) was fitted to the data.

Using the density of 8.799 g/cm3 obtained experimentally from the
diffusivity sample, the thermal conductivity was calculated as explained in the
Experimental Procedure. The resulting values are presented in Table 9 and
plotted in Figure 26. A curve with the equation

A = -895x 10°T% + 871 x 10T + 329 [18]

where A is the thermal conductivity (W/me*K) was fitted to the data. The
parabolic shape of the curve comes from the competing phenomena of
increasing heat capacity and decreasing thermal diffusivity. Most likely the
decrease in thermal diffusivity is caused by the gradually dissolution of Cr
back into the Cu matrix. With a slightly higher Cr:Nb ratio than the Cu-8 Cr-4
Nb samples, there is more Cr readily available for this.
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Thermal Properties Of Cu-4 Cr-2 Nb

Table 9 -

Temperature Heat Thermal Thermal
(K) Capacity Diffusivity Conductivity

(J/gK) (cm?s) (W/mK)
296 0.381 1.032 345
373 0.394 1.012 350
473 0.405 0.985 351
573 0.414 0.962 350
673 0.422 0.936 347
773 0.428 0.907 341
873 0.434 0.885 337
973 0.438 0.853 328
1073 0.443 0.822 320
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Low Cycle Fatigue

Typical Cu-8 Cr-4 Nb low cycle fatigue (LCF) loops are presented in Figure
27. Data were collected for many cycles, and representative cycles are
presented in the figure. Representative loops for all Cu-8 Cr-4 Nb samples are
presented in Appendix D.

The LCF lives of the specimens are presented in Figure 28. Additional data
on the inelastic strain and stress at half life are presented in Table 10. Data for
NARloy-Z in the solution heat treated and aged condition are also presented
where available for comparison.

The results show that the Cu-8 Cr-4 Nb possess superior LCF capability.
At room temperature and a 2.0% strain range, the worst case, Cu-8 Cr-4 Nb
has a life comparable to NARloy-Z. The data are also very reproducible. At
lower strain ranges the life of the Cu-8 Cr-4 Nb is significantly higher than that
of NARloy-Z.

The best LCF lives relative to NARloy-Z, though, are obtained at higher
temperatures. At 538°C, the average life of Cu-8 Cr-4 Nb is approximately 50%
greater at a 2.0% strain range and 200% greater at a 0.7% strain range
compared to NARloy-Z. Even if the temperature is increased to 650°C, the lives
of the Cu-8 Cr-4 Nb specimens are approximately 100% greater at both 0.7%

38



and 2.0% strain ranges than NARloy-Z tested at the lower temperature of
538°C.

Table 10 -
Low Cycle Fatigue Results

T Attoal Atinetastic N¢ Ac at VaN¢

(°C) (%) (%) (Cycles) (MPa)
Cu-8 Cr4 Nb

25 0.7 N.A. 4,647 N.A.
25 0.8 N.A. 15,641 N.A.
25 20 1.279 442 659.0

25 20 1.394 435 647.5
538 0.7 0.306 12,032 393.7
538 0.7 0.335 10,990 437 1
538 1.2 0.810 1,731 493.4
538 1.2 0.787 1,810 461.5
650 0.7 0.342 10,393 378.5
650 0.7 0.359 7,131 390.0
650 1.2 0.782 2,260 399.2
650 1.2 0.801 2,391 381.5

NARloy-Z (Refs. 9, 12)

25 0.8 N.A. 3,800 N.A.
25 1.2 N.A. 500 N.A.
538 0.7 0.46 3,601 231.8
538 1.2 0.92 1,126 253.0
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Discussion

Creep

The creep resistance of Cu-8 Cr-4 Nb, Cu-4 Cr-2 Nb and NARloy-Z were
measured between 500°C and 800°C at a variety of stresses. It was possible to
use the same stresses for the Cu-8 Cr-4 Nb and Cu-4 Cr-2 Nb samples, but the
NARloy-Z samples were not capable of supporting as high a load.

The NARloy-Z data was compared to the published values (9). The
reference source gives the minimum design levels or -3¢ values. Unfortunately,
the value for the standard deviation was not provided. However, all results do
fall above the line for the minimum design curve.

One observation that was confirmed in talks with Don Ulmer at Rocketdyne
(13) was the propensity of NARloy-Z to go into third stage creep quite early and
stay in third stage creep a significant portion of the test. While it did not occur
in all cases (see Appendix C), the long time in third stage creep resulted in
significantly greater creep elongations.

In comparison, the Cu-Cr-Nb show only a little third stage behavior before
fracture (see Appendices A and B). Of the two alloys examined, the Cu-4 Cr-2
Nb is more likely to exhibit third stage creep behavior. It was interesting to
note that the data from the Cu-4 Cr-2 Nb samples tested at 800°C/44.3 MPa
were consistent with the other 800°C data at lower stresses. Even though the
stress was much higher than the other 800°C tests, the data still fall on the
regression lines calculated with and without the 44.3 MPa data points. This
indicates that the material is well behaved, and the possibility exists to
extrapolate data to points outside the design spaces. It is important to
remember that care must be used in the extrapolations. The confidence
intervals increase extremely fast outside of the design space.

The results of the time to 1% creep, creep rates and creep lives for the Cu-
Cr-Nb alloys were very similar. The Cu-4 Cr-2 Nb alloy is clearly inferior to the
Cu-8 Cr-4 Nb alloy, but the difference is minimal over the temperature and
stress ranges of interest. Given the higher thermal conductivity of the Cu-4 Cr-
2 Nb alloy, thermally induced stresses may actually be less than in the Cu-8
Cr-4 Nb alloy because of smaller thermal gradients. A designer should
examine both alloys to determine which is superior for a given application.

Both Cu-Cr-Nb alloys showed much greater creep resistance than NARloy-

Z. The much higher volume fractions of precipitates for the Cu-Cr-Nb alloys

compared to NARloy-Z accounts for the better behavior at lower temperatures,

especially 500°C. The stability of the precipitates contributes to the excellent

creep resistance at 650°C and 800°C. The NARIloy-Z precipitates are rapidly
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dissolving at these higher temperatures. Any remaining benefit from working
the alloy is also diminishing as the material recovers and recrystallizes.
Examination of the various charts also reveals that the slope of the lines for the
Cu-Cr-Nb alloys are nearly parallel. The slopes of the NARloy-Z lines are also
similar, but tend toward slightly worse values.

The mean times to 1% creep for the Cu-Cr-Nb alloys and NARloy-Z are
compared in Figure 29. Compared to NARloy-Z, Cu-8 Cr-4 Nb takes 100% to
200% longer to reach 1% strain at a given stress. The life advantage is
smallest at 500°C and very pronounced at 800°C. Cu-4 Cr-2 Nb has
intermediate values for the time to 1% creep, but tends to be closer to Cu-8 Cr-
4 ND, especially at the higher temperatures.

The mean steady-state creep rates of the three alloys are presented in
Figure 30. The creep rates for the Cu-Cr-Nb alloys were significantly lower
than NARloy-Z. Cu-8 Cr-4 Nb creep rates were 1.5 to 3 orders of magnitude
lower at a given stress than the corresponding values for NARloy-Z. Cu-4 Cr-2
Nb creep rates were 1.3 to 2.5 orders of magnitude lower than NARloy-Z in the
range of temperatures and stresses tested.
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Figure 31 compares the mean creep lives of the Cu-Cr-Nb alloys and
NARloy-Z. Cu-8 Cr-4 Nb enjoys an advantage of 150% to 250% longer lives at
a constant stress. Cu-4 Cr-2 Nb enjoys an advantage of between 100% and
150% longer lives.

Figure 32 presents the average creep elongations of the three alloys. For
NARloy-Z, increasing the temperature can greatly increase the creep

elongation.

There appears to be a weak correlation between increasing

temperature and increasing elongation for the Cu-Cr-Nb alloys, but it is not
nearly as strong as for NARloy-Z. For all three alloys, there does not appear to
be a good correlation between stress and creep elongation.
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A designer may wish to design for a given life rather than a specific stress.
Revisiting Figure 28 and 30, the Cu-Cr-Nb alloys show the ability to support
much greater stresses for a given life. Cu-8 Cr-4 Nb enjoys an advantage of
30% to 160% greater stress at a given time to 1% creep compared to NARloy-Z.
For a given stress-rupture life, Cu-8 Cr-4 Nb can withstand stresses 80% to
160% more than NARloy-Z. Cu-4 Cr-2 Nb can withstand 10% to 150% greater
stress for a specific time to 1% creep and 60% to 150% greater stress for a
given stress-rupture life.

Low Cycle Fatigue

Examining the Cu-8 Cr-4 Nb LCF loops, there were some changes in the
shape of the loops with increasing cycles, but in general the shape of the loops
remained reasonably constant until failure. The magnitude of the stresses
were not greatly increased with increasing cycles, indicating minimal work
hardening under the test conditions. The stresses at 538°C and 650°C were
very close for the 0.7% total strain tests. The 1.2% total strain tests were not
as close, but were still similar.

The results of the low cycle fatigue testing show that Cu-8 Cr-4 Nb had a
significantly higher LCF lives than NARloy-Z. Detailed microscopy was not
conducted on the test specimens. However, the increase in LCF life even
though the Cu-8 Cr-4 Nb alloy has a lower ductility is most likely attributable
to the large volume fraction of very fine, extremely hard Cr.Nb precipitates.
These precipitates delay or stop the formation of persistent slip bands and
extend the life of the alloy in LCF testing.

NARloy-Z, on the other hand, has a much lower volume fraction of CuxZr
precipitates. These precipitates do not stop the formation of persistent slip
bands. The Ag present in the alloy is predominantly present in a Cu solid
solution. Even if present as a precipitate, the soft metallic precipitates would
not be effective at stopping persistent slip band formation. Because of this,
NARloy-Z must rely on its modest strength, high ductility and good toughness
for its LCF resistance. .

Since both the matrix and precipitate mechanical properties are not
significantly affected by changes in temperature over the testing temperature
range, the LCF lives are not radically different at the different test
temperatures. The increase in life and temperature capability could give Cu-8
Cr-4 Nb a significant advantage over competitive materials.

Thermal Conductivity

Figure 33 compares the thermal conductivities of Cu, NARloy-Z and the Cu-
Cr-Nb alloys to each other and pure Cu. In all cases, the relative thermal
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conductivity is the alloy thermal conductivity at a given temperature divided by
the thermal conductivity of Cu at the same temperature.
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Figure 33 -
Comparison of Cu-Cr-Nb, NARloy-Z And Cu Thermal Conductivities

The thermal conductivity of the Cu-8 Cr-4 Nb alloy suffers in comparison to
NARloy-Z. This is most likely due to the much higher total alloying content and
significantly larger volume fraction of precipitates. The precipitates probably
act as scattering sites to lower the thermal diffusivity and hence thermal
conductivity. In the case of Cu-4 Cr-2 Nb, the alloying levels have been
reduced sufficiently to make the thermal conductivity competitive with NARloy-
Z, especially at the intermediate and higher temperatures where the material is
expected to be used.

The relative thermal conductivity of NARloy-Z increases steadily as the
temperature increases. The dissolving of Ag precipitates into the Cu matrix
appears to be the cause of this phenomena (14). The increase in thermal
conductivity indicates that the strengthening from the precipitates is
decreasing over the temperature range. There is therefore a strong inverse
relationship between strength and thermal conductivity that must be
considered in a design.

Compared to most materials, i.e., stainless steels and superalloys, the
conductivities of the Cu-Cr-Nb alloys are much greater. Typically steels and
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other materials with comparable strengths to the Cu-Cr-Nb alloys typically
have conductivities in the 25 to 75 W/mK range. This is less than one third
the value of the Cu-Cr-Nb alloys.

The higher strengths of the Cu-Cr-Nb alloys also allow for trade-offs
resulting in a reduced wall thickness. Ultimately the wall thickness will
determine the operating temperatures and thermal gradients. While it would
be preferable that the thermal conductivities of the Cu-Cr-Nb alloys were
higher, a proper design should eliminate any problems associated with the
slightly lower thermal conductivities.
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Summary and Conclusions

Two Cu-Cr-Nb alloys have been successfully produced using conventional
argon gas atomization and extrusion. The properties of the resulting materials
showed a remarkable high temperature creep resistance combined with a good
thermal conductivity. The Cu-8 Cr-4 Nb alloy has also been shown to have
exceptional LCF capability as well.

The creep resistance of the Cu-Cr-Nb alloys were both considerably greater
than NARloy-Z. For a constant rupture life, the stress that Cu-4 Cr-2 Nb can
support is between 60% and 150% greater than NARloy-Z. Cu-8 Cr-4 Nb is
even better, being able to support 80% to 160% greater stresses. Times to 1%
creep are similarly improved. Steady-state creep rates are more than one order
of magnitude lower for the Cu-Cr-Nb alloys.

Cu-8 Cr-4 Nb performs well in LCF. The loops tend to be consistent
throughout the life of the samples with little deviation in the stress-strain
behavior. The loops indicate that Cu-8 Cr-4 Nb does not undergo much work
hardening under the test conditions. The lives of the Cu-8 Cr-4 Nb specimens
ranged from comparable at room temperature to as much as 200% longer at
elevated temperatures. In addition, the LCF lives of Cu-8 Cr-4 Nb are not
adversely affected by increasing the temperature from 538°C to 650°C.

The thermal conductivities of the Cu-Cr-Nb alloys are good, but are not as
good as NARloy-Z. The Cu-8 Cr-4 Nb alloy which has the higher volume
fraction of precipitates ranges from 72% to 82% the thermal conductivity of
pure Cu. Cu-4 Cr-2 Nb with its lower loading has a thermal conductivities that
range from 85% to 93% of the thermal conductivity of Cu. In comparison,
most materials with similar strengths such as stainless steels have
conductivities less than 25% that of Cu. NARloy-Z has somewhat higher
thermal conductivity. It achieves a peak thermal conductivity almost equal to
pure Cu at 800°C. However, NARloy-Z has minimal strength at these
temperatures. A careful design taking advantage of the excellent high
temperature strength of the Cu-Cr-Nb alloys can easily circumvent the slightly
lower thermal conductivities.

The combination of excellent high temperature strength, good LCF
resistance and high thermal conductivity make the Cu-Cr-Nb alloys excellent
choices for high temperature applications.
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Future Work

Testing is currently underway to determine the tensile strengths of the Cu-
8 Cr-4 Nb, Cu-4 Cr-2 Nb and NARloy-Z at room and elevated temperatures. A
design level test matrix is also being used for that testing program.

Additional tensile and creep testing is planned on material that has been
extruded into a bar form and hot and cold rolled various reductions.

Finally, Cu-8 Cr-4 Nb powder has been supplied to the Rocketdyne Division
of Rockwell International for the fabrication of combustion chamber liners
under the Air Force Thrust Cell Initiative Program. Results will be forthcoming
on the performance of the alloy.
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conductivity of pure Cu. The combined results indicate that the Cu-Cr-Nb alloys offer an attractive alternative to current
high temperature Cu-based alloys such as NARIloy-Z.
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